Transcriptomic gender differences in newborns upon prenatal exposure to Polycyclic Aromatic Hydrocarbons in relation to birth weight

Kevin Hochstenbach

BioDetectors, 2016
Lausanne, Switzerland
Contents

Background

- Polycyclic Aromatic Hydrocarbons (PAHs)
- Why newborns?
- Health implications: birth weight
- Why gender differences?
- Toxicogenomics

Results
Polycyclic Aromatic Hydrocarbons

Group of organic compounds that occur naturally in mixtures

Incomplete combustion:
- Tobacco smoke, wood smoke
- Air pollution
- Grilled, smoked foods
- Occupational exposure

Health implications are a public concern
- Carcinogens
- Immunotoxicants
- Developmental toxins

9th BioDetectors conference
Lausanne, Switzerland
In utero: a critical window of exposure

- Fetal vulnerability
 - Cell proliferation
 - Detoxification system
 - DNA repair
 - Immune system

13th century
Renaissance
1940s
Health implications fetal exposure PAHs

- Cross the placental barrier and affect:
 - Respiratory symptoms, asthma and wheezing
 - Neurological and cognitive health outcomes
 - Birth outcomes

- Birth weight influences
 - Survival and perinatal morbidity
 - Subsequent health and development.
 - Associated with leukemia and other chronic diseases.

- Birth weight more strongly affected in males

- Gender differences in gene expression responses

Toxicogenomics
Toxicogenomics

"normal situation"

DNA
Gene 1
Gene 2
Gene 3

RNA

Protein

"Normal" cell function

Compare

"After exposure"

DNA
Gene 1
Gene 2
Gene 3

RNA

Protein

Altered cell function

Compare
Toxicogenomics

Normal situation

Label with green

Gene 1

After exposure

Gene 2

Gene 3

Label with red

Up-regulation

Down-regulation

No regulation
Transcriptomic gender differences

Research Article

Global Gene Expression Analysis in Cord Blood Reveals Gender-Specific Differences in Response to Carcinogenic Exposure In Utero

Kevin Hochstenbach¹, Danitsja M. van Leeuwen¹, Hans Gmuender⁴, Ralf W. Gottschalk¹, Martinus Løvik⁵, Berit Granum⁵, Unni Nygaard⁵, Ellen Namork⁵, Micheline Kirsch-Volders⁶, Ilse Decordier⁶, Kim Vande Loock⁶, Harrie Besselink², Margareta Törnqvist⁷, Hans von Stedingk⁷, Per Rydberg⁷, Jos C.S. Kleinjans¹, Henk van Loveren¹,³, and Joost H.M. van Delft¹

Transcriptomic gender differences

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Process</th>
<th># Significant Processes Males/Females</th>
<th>T-Value Males</th>
<th>P-Value Males</th>
<th>T-Value Females</th>
<th>P-Value Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR CALUX</td>
<td>Nucleosome assembly</td>
<td>5/29</td>
<td>4.1</td>
<td>0.154</td>
<td>6.4</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>T-cell receptor signaling pathway</td>
<td></td>
<td>-2.7</td>
<td>1.000</td>
<td>-4.5</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>B-cell receptor signaling pathway</td>
<td></td>
<td>-0.6</td>
<td>1.000</td>
<td>-4.1</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>TNF-alpha-NF-kB Signaling Pathway</td>
<td></td>
<td>2.9</td>
<td>0.551</td>
<td>-4.2</td>
<td>0.010</td>
</tr>
<tr>
<td>GA Hb-adducts</td>
<td>Wnt signaling pathway</td>
<td>8/12</td>
<td>4.2</td>
<td>0.032</td>
<td>0.2</td>
<td>1.000</td>
</tr>
<tr>
<td>%MNBN</td>
<td>Translational elongation</td>
<td>30/13</td>
<td>8.5</td>
<td><0.001</td>
<td>-5.7</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Spliceosome</td>
<td></td>
<td>4.6</td>
<td>0.002</td>
<td>-5.4</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>mRNA processing</td>
<td></td>
<td>4.0</td>
<td>0.012</td>
<td>-4.1</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Pathways in cancer</td>
<td></td>
<td>4.8</td>
<td>0.001</td>
<td>1.8</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Translational elongation</td>
<td></td>
<td>8.5</td>
<td><0.001</td>
<td>-5.7</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Cancer Epidemiol Biomarkers Prev. 2012;21(10):1756-67

9th BioDetectors conference
Lausanne, Switzerland
Are there transcriptomic gender differences in newborns upon prenatal exposure to PAHs in relation to birth weight??

ERC project
Coordinator: Prof. Tim Nawrot
Funding FWO grant
PAHs/BaP

Ligand binding

AHR

HSP90

HSP90

XAP2

ARNT

Nuclear translocation

Nucleus

Cytoplasm

PAHs/BaP

CYP1A1

BaP

BPDE

ROS

Mt DNA damage

Mitochondrion

Caspases

Cytochrome C

Nucl. DNA damage

Biotransformation: ROS/DNA reactive intermediates

Toxicity

Luciferase

Biotransformation enzymes

Endoplasmatic Reticulum

XRE

BAK/BAX

Biotransformation enzymes

PAHs/BaP
Meet-in-the-middle approach

PAH-CALUX → Association → Birth weight

PAH
Associated genes and processes

Overlap
Associated processes

Gene expression at birth

PAH
Associated genes and processes
PAH-induced gene expression - Common

<table>
<thead>
<tr>
<th>category</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication/Transcription/Translation</td>
<td>29</td>
</tr>
<tr>
<td>Cell cycle/division/proliferation</td>
<td>12</td>
</tr>
<tr>
<td>Immune response</td>
<td>6</td>
</tr>
<tr>
<td>GPCR</td>
<td>2</td>
</tr>
<tr>
<td>Proteosome</td>
<td>2</td>
</tr>
<tr>
<td>DNA repair</td>
<td>1</td>
</tr>
<tr>
<td>Embryogenesis</td>
<td>1</td>
</tr>
</tbody>
</table>

Consensus Enrichment analyses
Q value 0.05
PAH-induced gene expression - Females

<table>
<thead>
<tr>
<th>category</th>
<th>PAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA cycle</td>
<td>8</td>
</tr>
<tr>
<td>Disease</td>
<td>3</td>
</tr>
<tr>
<td>Cell cycle/division/proliferation</td>
<td>2</td>
</tr>
<tr>
<td>Replication/Transcription/Translation</td>
<td>2</td>
</tr>
<tr>
<td>DNA damage response</td>
<td>1</td>
</tr>
<tr>
<td>Proteasome</td>
<td>1</td>
</tr>
<tr>
<td>Cancer</td>
<td>1</td>
</tr>
<tr>
<td>Integrin</td>
<td>1</td>
</tr>
</tbody>
</table>
PAH-induced gene expression - Males

<table>
<thead>
<tr>
<th>category</th>
<th>#</th>
<th>category</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal transduction</td>
<td>103</td>
<td>Vascular system</td>
<td>6</td>
</tr>
<tr>
<td>Immune response</td>
<td>18</td>
<td>Mitochondrial</td>
<td>5</td>
</tr>
<tr>
<td>Neurobiology</td>
<td>14</td>
<td>DNA damage response</td>
<td>4</td>
</tr>
<tr>
<td>Diseases</td>
<td>12</td>
<td>Senescence/Apoptosis</td>
<td>4</td>
</tr>
<tr>
<td>Cell cycle regulation</td>
<td>10</td>
<td>Biotransformation</td>
<td>3</td>
</tr>
<tr>
<td>Developmental Biology</td>
<td>10</td>
<td>Endocrine system/hormones</td>
<td>3</td>
</tr>
<tr>
<td>DNA packaging</td>
<td>10</td>
<td>Telomeres</td>
<td>3</td>
</tr>
<tr>
<td>Epigenetics</td>
<td>8</td>
<td>AhR-ER-AR</td>
<td>2</td>
</tr>
<tr>
<td>Cancer</td>
<td>7</td>
<td>Folate</td>
<td>1</td>
</tr>
<tr>
<td>Glycobiology</td>
<td>6</td>
<td>Vitamin E</td>
<td>1</td>
</tr>
</tbody>
</table>
Meet-in-the-middle: Overlap common

- PAH: 54 Associated processes
- BW: 129 Associated processes
- Overlapping processes: 40
Meet-in-the-middle: Overlap common

<table>
<thead>
<tr>
<th>category</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication/Transcription/Translation</td>
<td>26</td>
</tr>
<tr>
<td>Cell cycle/division/proliferation</td>
<td>12</td>
</tr>
<tr>
<td>GPCR</td>
<td>1</td>
</tr>
<tr>
<td>DNA repair</td>
<td>1</td>
</tr>
</tbody>
</table>
Meet-in-the-middle: Overlap males

- **PAH**
 - Associated processes: 331
 - Overlapping processes: 109

- **BW**
 - Associated processes: 615
Meet-in-the-middle: Overlap males

- EGF – Ras - ERK - PI3K-Akt
- TCR signaling-NFkB cascade
- IL-1 p38
- Cyclin E during G1/S transition

Cell cycle regulation

TCR signaling-NFkB cascade

Cancer

Wnt signaling

ATM

Senescence/Apoptosis

BARD1

Biotransformation

Complexation between folic acid and PAHs

Protective against PAH-DNA adduct formation

Vitamin E

Glycobiology

Cyclin E during G1/S transition

9th BioDetectors conference
Lausanne, Switzerland
Take home message!

- Gender-specific PAH-Birth weight association through modulation of the fetal transcriptome:
 - Higher transcriptomic response in male newborns upon prenatal PAH exposure

- Possible gender-specific PAH mechanisms-of-action
 - Epigenetics
 - DNA damage:
 - Cell cycle regulation
 - P38/JNK
 - Apoptosis
 - Folate
 - Vitamine E
Ongoing and future research

Develop a toxicogenomics-based biomarker indicative of in utero exposure to PAHs

Apply additional PAH-CALUX on subset to validate developed biomarker

Measure PAH adducts and its newly developed transcriptome signature in cord blood of 850+ newborns within the ENVIRONAGE birth cohort by means of qRT-PCR

Identify transcriptomic profiles in cord blood associated with the effects of in utero PAH exposure on:
- Telomere length
- Neurodevelopment
- Follow up data on immune functionality.
<table>
<thead>
<tr>
<th>Acknowledgements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Nawrot</td>
</tr>
<tr>
<td>Ellen Winckelmans</td>
</tr>
<tr>
<td>Hasselt University, BE</td>
</tr>
<tr>
<td>Jos Kleinjans</td>
</tr>
<tr>
<td>Marcel van Herwijnen</td>
</tr>
<tr>
<td>Maastricht University, NL</td>
</tr>
<tr>
<td>Bram Brouwer</td>
</tr>
<tr>
<td>Harrie Besselink</td>
</tr>
<tr>
<td>Peter Behnisch</td>
</tr>
<tr>
<td>BioDetection Systems, NL</td>
</tr>
</tbody>
</table>